
 1 

Novel Formulations of Flexibility Index and Design Centering  

for Design Space Definition 

Fei Zhao, M. Paz Ochoa, Ignacio E. Grossmann* 

Center for Advanced Process Decision-Making, Department of Chemical Engineering, 

Carnegie Mellon University, Pittsburgh, PA 15213 

Salvador García-Muñoz, Stephen D. Stamatis 

Synthetic Molecule Design and Development, Lilly Research Laboratories, Indianapolis, IN 

46285  

Abstract 

Design space definition is one of the key parts in pharmaceutical research and development. 

Flexibility index and design centering are two practical ways to estimate the design space as a 

feasible operating region with a specified shape. In this study, we propose a novel formulation 

of flexibility index based on a direction search method, which can be applied to any shapes of 

feasible operating regions. We propose two methods for design centering problems. The vertex 

direction search method is developed as a single-level optimization model, which is applicable 

for convex regions. A derivative-free optimization method is developed based on the proposed 

flexibility index model, which is applicable to convex and nonconvex problems. In order to 

find the near global solutions, the Latin Hypercube Sampling method is used to generate 

multiple starting points for the DFO solver, and the optimal nominal point corresponds to the 

largest flexibility index. Computational results of the examples show that the efficiency of the 

proposed algorithms.  
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1. Introduction 

In order to increase manufacturing flexibility in the pharmaceutical industry, Quality by Design 

(QbD)1 was launched by the US Food and Drug Administration (FDA). The QbD approach 

can define a quality target product profile (QTPP)2, and the manufacturing properties that 

should be within an appropriate limit or distribution to ensure the desired product quality are 

denoted as critical quality attributes (CQAs). The concept of design space can be interpreted 

as “the multidimensional combination and interaction of input variables and process 

parameters that have been demonstrated to provide assurance of quality”3. The product quality 

can meet the requirements as long as the process parameters vary within an approved design 

space. Process parameters4 correspond to degrees of freedom or manipulated variables in a 

manufacturing process, which are measured, known and can be set within controller tolerance 

to a desired value. In addition, the uncertainty in model parameters plays an important role and 

cannot be ignored. Each model parameter is typically estimated to follow a Gaussian 

distribution with an expected value and a confidence interval. In summary, one of the key 

components of the QbD in the pharmaceutical industry is the identification of the design space 

defined as the region in the space of the process parameters over which the CQAs of the product 

are acceptable.  

The traditional practice to identify the design space is based on experiments. By performing 

extensive experiments, the relationships of process parameters and the CQAs are established, 

and the process parameters that have medium/high impacts on the CQAs can be determined. 

The design space can be depicted by response surface modeling and further be verified by 

additional experiments 5 . Hence, obviously, this method requires performing extensive 

experiments, and it is generally very time-consuming and expensive. To simplify the cost of 

developing design spaces, the mechanistic models that contain relationships of process 

parameters and CQAs can be formulated in advance. Following the mechanistic models, Goyal 
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and Ierapetritou6 proposed an approach based on outer approximation to identify the operating 

envelopes where process operation is feasible, safe and profitable. García Muñoz et al.5 defined 

the probabilistic design space by creating a grid of sample points for the process parameters. 

Kucherenko et al.7 proposed an acceptance-rejection method that outperforms the exhaustive 

sampling achieving a two-orders of magnitude speed-up by using metamodeling and adaptive 

sampling in the design space determination. Apart from using numerical computation methods 

to estimate the contour of the design space, Zhao and Chen8 proposed to represent the design 

model as an existential quantifier formula, and then apply the symbolic computation method 

to accurately describe the design space and explicitly express the functional relationships 

between uncertain parameters. Due to the heavy computational burden caused by the symbolic 

computation, the method is only applicable to relatively small‐scale problems.  

Moreover, the optimization approaches based on models have been intensively studied to 

describe the design space9. Characterizing a design space for a process design model is very 

similar to flexibility analysis problem in the chemical process industry 10 . Two classical 

flexibility analysis problems are flexibility test and flexibility index11,12. The former one can 

verify if a feasible operation can be obtained for a given range of uncertainty scenarios; the 

latter one, flexibility index, can be used to describe an operational range, which represents a 

maximum scaled departure of all process parameters from the given nominal conditions, such 

as a largest hyper-rectangle inscribed in the feasible space, inside which the steady-state 

operation can be attained by adjusting the control variables. Since the design space is limited 

by the acceptable ranges for process parameters, the result of flexibility index can be used to 

approximate the design space as an inscribed largest feasible region, which may be a hyper-

rectangle, ellipsoid or other appropriate and acceptable shapes. Moreover, if the nominal 

conditions of the process parameters are unknown, the flexibility index problem can be 

extended to a design centering problem, which focuses on determining the optimal nominal 
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conditions while maximizing the feasible operating region. Flexibility index and design 

centering are two important design space definition problems. In this work, we will propose 

novel formulations to deal with these two problems.  

The rest of this article is organized as follows. Sections 2 and 3 provide problem statements 

and reviews of previous methods for flexibility index and design centering. Section 4 describes 

the formulation of flexibility index, and the shapes of feasible region are discussed. Section 5 

proposes two methods for design centering, including vertex direction search method and 

derivative-free optimization method. Several numerical examples and cases are provided in 

Section 6 to illustrate the proposed method. Section 7 concludes the paper. 

2. Problem statements 

Flexibility index problems are commonly formulated as multi-level optimization models with 

existing approaches relying on mixed-integer linear or nonlinear programming solvers13, and 

all the model constraints will be complied with. Before solving the optimization problems, the 

nominal conditions of the process parameters should be given. In this work, for the flexibility 

index problem we will not consider recourse decisions as this is the current practice in the 

pharma industry, and in order to simplify the multi-level optimization formulation, the model 

parameters will be fixed at their mean values of the Gaussian distribution. Thus, the decision 

variables in the optimization model include the process parameters and the state variables.  

For a given plant design, the flexibility constraint with no recourse can be described as a logic 

expression as follows10:  

∀𝜽 ∈ 𝑇%{∀𝑗 ∈ 𝐽[𝑔+(𝜽, 𝒙) ≤ 0],	∀𝑖 ∈ 𝐼[ℎ5(𝜽, 𝒙) = 0]} (1) 

where	𝜽 and 𝒙 represent process parameters and state variables, respectively. Eq. (1) states that 

for any possible realization of the process parameters in 𝑇%, all of the individual constraints 

should be satisfied. Eq. (1) can be equivalently reformulated by the use of global max operator, 

leading to Eq. (2). 



 5 

𝜒 = max
𝜽∈<=

max
+∈>

𝑔+(𝜽, 𝒙) ≤ 0

𝑠. 𝑡.		ℎ5(𝜽, 𝒙) = 0,			∀𝑖 ∈ 𝐼
(2) 

where the maximization problem in 𝜒 determines the worst constraint violation. The flexibility 

index problem with no recourse can be described by the following model11.  

𝐹 = max
E∈ℝG

𝛿

𝑠. 𝑡.		𝜒 = max
𝜽∈<I

max
+∈>

𝑔+(𝜽, 𝒙) ≤ 0

								ℎ5(𝜽, 𝒙) = 0,			∀𝑖 ∈ 𝐼
								𝑇%(𝜽) = {𝜽: 𝜽K − 𝛿𝛥𝜽N ≤ 𝜽 ≤ 𝜽K + 𝛿𝛥𝜽P}

(3) 

The flexibility index F can be defined as the largest value of 𝛿 for the uncertainty set of process 

parameters, and in Eq. (3), the uncertainty set 𝑇%(𝜽) is described as a rectangle. Note that, 𝜒 

requires that all of the process parameters in 𝑇%(𝜽) should satisfied the model constraints 𝑔+ 

and ℎ5, which is a semi-infinite programming problem. To solve Eq. (3), the complementarity 

conditions with mixed-integer constraints are commonly used, and Haar condition14 is assumed 

be hold, i.e., the no recourse case states that the number of active constraints is equal to one. 

This condition can make sure that the KKT condition is necessary and sufficient. Moreover, 

geometrically, 𝜒 in Eq. (3) represents a bi-level optimization model to define a whole rectangle 

within the feasible region; however, for the flexibility index problem, generally, there is only 

one vertex or side of the largest rectangle that will lie on the boundary of the feasible region, 

which may correspond to the convex or nonconvex cases, respectively. For design centering 

problems, the nominal points of the process parameters 𝜽K are new variables, and the nominal 

points will be searched within the entire feasible region; thus, the generic formulation of design 

centering can be described by the following model. 

max
𝜽S

𝛿

𝑠. 𝑡.		𝑔+(𝜽K, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
								ℎ5(𝜽K, 𝒙) = 0,			∀𝑖 ∈ 𝐼
								𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(3)
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The flexibility index model will be applied for each candidate nominal point. Some optimizing 

searching method will be executed until the optimal nominal point corresponding to the largest 

flexibility index is located.  

3. Review of previous methods 

If the shape of the feasible operating region is specified as a hyper-rectangle, the computational 

complexity of the multi-level optimization models can be eliminated by a direct search 

algorithm that enumerates all vertices, that is, the vertex direction search method11, which is 

guaranteed to be rigorous for convex regions. However, for nonconvex design spaces, the 

vertex search method cannot guarantee to provide rigorous solutions. In order to avoid the 

convexity assumption, Grossmann and Floudas15  developed an active constraint strategy, 

where the flexibility index problem can be reformulated as a mixed-integer linear or nonlinear 

programming model by applying the Karush-Kuhn-Tucker (KKT) conditions. However, for a 

large-scale problem, it is often hard to solve the corresponding MINLP model and finding its 

global optimum. Li et al.16 developed a direction matrix to search the critical points. By 

incorporating a simulated annealing algorithm and a decoupling strategy, the flexibility index 

of a large-scale system can be obtained. 

A number of approaches have been proposed to quantify system flexibility, and an extensive 

review is provided by Grossmann et al.13. Apart from the hyper-rectangle uncertainty set, 

Pulsipher and Zavala17 proposed that the uncertainty set can be characterized using multivariate 

Gaussian random variables, i.e., applying an ellipsoidal set to capture correlations of process 

parameters. The flexibility index can be computed by solving a mixed-integer conic 

programming (MICP) problem. This method also can be generalized to capture different shapes 

of uncertainty sets. Pulsipher et al.18 presented a computational framework for analyzing and 

quantifying system flexibility, which can generalize the uncertainty sets to consider 

compositions of sets, compute a suitable nominal point, and identify and rank limiting 
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constraints. Since the hyper-rectangle representations of the uncertainty set cannot adequately 

capture correlations of the parameters19, the ellipsoid shapes may have a larger potential of 

applications. 

Director and Hachtel20 addressed the design centering problem of choosing a nominal design 

point to maximize the number of VLSI circuits that satisfy performance tolerances. The authors 

proposed the simplicial approximation approach, based on the explicit approximation of the 

boundary of an n-parameter design space by a polyhedron made up of n-dimensional simplices. 

The optimization approaches based on models can also be applied to deal with design centering 

problems. From a mathematical view, the design centering problem is a classical generalized 

semi-infinite programming (GSIP) problem21,22. A GSIP problem is characterized by a finite 

number of decision variables and an infinite number of inequality constraints. Since the 

nominal point is not given, the location of the feasible region is unknown. All of the points 

within the feasible region must satisfy all the model constraints, which means that feasibility 

must be guaranteed for an infinite number of constraints. Stein23 showed that the Reduction 

Ansatz of semi-infinite programming generically holds at each solution of the reformulated 

design centering problem and proved a new first order necessary optimality condition for 

design centering model. Hardwood and Barton24 formulated a design centering problem as a 

GSIP model and discussed reformulations to simpler problems that lead to finite nonlinear 

programs (NLPs) or standard semi-infinite programs (SIP). Following the GSIP methods, the 

obvious drawback for design centering is that they give rise to complex mathematical programs 

with either semi-infinite or chance constraints that are computationally hard to tackle 

rigorously. 

In order to avoid solving the complex GSIP problems, in this work, we propose to use the 

flexibility index model to address the design centering problem by derivative-free optimization 

method. First, a novel bi-level optimization model of flexibility index based on direction search 
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method is proposed, which can be extended to any shapes of uncertainty sets. By applying the 

Karush-Kuhn-Tucker (KKT) conditions, the flexibility index can be transformed into a single-

level formulation. Based on this, derivative-free optimization method using multiple starting 

points is adopted to search the nominal point within the design space, while a largest feasible 

region can be obtained. 

4. New formulations for flexibility index 

In order to avoid the semi-infinite programming problem for flexibility index, we propose a 

new simpler formulation, which is based on the following direction search formulation. 

𝜽 = 𝜽K + 𝛿𝜽Z (4) 

where the vector 𝜽Z represents a direction from the nominal point11. Along this direction, if 𝜽 

can satisfy all the constraints and make at least one inequality constraint active, i.e, 

\
𝑔+(𝜽) ≤ 0,			∀𝑗 ∈ 𝐽
𝑔](𝜽) = 0,			∃𝑠 ∈ 𝐽

(5) 

𝛿 is the largest value along this direction. Figure 1 shows two directions from 𝜽K, i.e., 𝜽Z` and 

𝜽Za. 𝜽` and 𝜽a are farthest feasible points along the directions.  

𝜽` = 𝜽K + 𝛿`𝜽Z`
𝜽a = 𝜽K + 𝛿a𝜽Za

   and   𝑔
(𝜽`) ≤ 0
𝑔(𝜽a) ≤ 0 

 

Figure 1. Geometric interpretation of direction search. 
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The optimization model Eq. (6) is presented, which can be used to calculate the largest 𝛿 for 

each direction 𝜽Z from the nominal point 𝜽K. 

max
E,b=

𝛿

𝑠. 𝑡.		𝑔+(𝜽, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
									ℎ5(𝜽, 𝒙) = 0,			∀𝑖 ∈ 𝐼
									𝜃d = 𝜃dK + 𝛿𝜃e%,			∀𝑝 ∈ 𝑃
									𝛿 ≥ 0

(6) 

4.1. Shapes of feasible region 

Compared with 𝑇d(𝜽) in Eq. (3), the rectangle that is used for direction search can be simply 

defined by Eq. (7), which is not relevant to 𝛿; thus, we can extend the shape from rectangle to 

any other shapes, as long as the shape can be explicitly formulated. For instance, a rectangle is 

formulated as follows: 

−∆𝜃dN ≤ 𝜃ed ≤ ∆𝜃dP,			∀𝑝 ∈ 𝑃 (7) 

A standard ellipse is formulated as Eq. (8). 

Ellipse:			r s
𝜃ed
Δ𝜃d

u
a

= 1
%

dv`
(8) 

where Δ𝜃d represents the given radius, which can determine the shape of the ellipse. If	Δ𝜃d =1, 

the ellipse will become a circle. 

Circle:			r 𝜃ed
a = 1

%

dv`
(9) 

Since the circle is a special case of ellipse, only rectangle and ellipse are considered in this 

work. 

4.2. Single-level formulation of flexibility index 

Once the shape of feasible region is specified, the optimization problem shown in Eq. (6) can 

be executed to calculate the largest 𝛿 for each direction from the given nominal point, and the 

directions are along the boundary of the shape. Based on the above, a new flexibility index 
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problem with no recourse is proposed as follows.  

𝐹 = min
bZ}

max
E,b}

𝛿

𝑠. 𝑡.		𝑔+(𝜽, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
								ℎ5(𝜽, 𝒙) = 0,			∀𝑖 ∈ 𝐼
								𝜃d = 𝜃dK + 𝛿𝜃ed,			∀𝑝 ∈ 𝑃
								𝑠ℎ𝑎𝑝𝑒�𝜽Z� ∈ 𝑄
								𝛿 ≥ 0

(10) 

where 𝑠ℎ𝑎𝑝𝑒�𝜽Z� represents the formulation of a specified shape of the feasible region, Q = 

{Eq. (7), Eq. (8), and any other shapes}; 𝛿 represents a scale factor of the shape. It is worth 

noting that any shape of feasible region can be used, as long as its formulation of 𝜽Z can be 

provided. The flexibility index F is defined as the minimum value of 𝛿 for all of the directions 

along the shape of the feasible region. Eq. (10) can be equivalently expressed as the following 

bi-level optimization model.  

min
bZ=
	𝛿

𝑠. 𝑡.		𝑠ℎ𝑎𝑝𝑒�𝜽Z� ∈ 𝑄
									max

E,b=
𝛿

									𝑠. 𝑡.		𝑔+(𝜽, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
																		ℎ5(𝜽, 𝒙) = 0,			∀𝑖 ∈ 𝐼
																		𝜃d = 𝜃dK + 𝛿𝜃ed,			∀𝑝 ∈ 𝑃
																	−𝛿 ≤ 0

(11) 

To solve this bi-level optimization model, the inner problem can be replaced by the Karush-

Kuhn-Tucker (KKT) conditions and complementarity conditions. The Lagrange function is 

ℒ = −𝛿 +r𝜆`,+ ∙ 𝑔+(𝜽, 𝒙)
+

− 𝜆a𝛿 +r 𝜇`,5 ∙ ℎ5(𝜽, 𝒙)
5

+r 𝜇a,d�𝜃d − 𝜃dK − 𝛿𝜃ed�
d

(12) 

The stationary conditions of the Lagrange function with respect to 𝛿, process parameters 𝜃d 

and state variables 𝑥� are as follows: 
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𝜕ℒ
𝜕𝛿 = −1 − 𝜆a −r𝜇a,d

d

𝜃ed = 0

𝜕ℒ
𝜕𝜃d

=r𝜆`,+ ∙
𝜕𝑔+
𝜕𝜃d+

+r𝜇`,5 ∙
𝜕ℎ5
𝜕𝜃d5

+ 𝜇a,d = 0,			∀𝑝 ∈ 𝑃

𝜕ℒ
𝜕𝑥�

=r𝜆`,+ ∙
𝜕𝑔+
𝜕𝑥�+

+r𝜇`,5 ∙
𝜕ℎ5
𝜕𝑥�5

= 0,			∀𝑘 ∈ 𝐾

(13) 

The complementarity conditions are 

𝜆`,+ ∙ 𝑔+(𝜽, 𝒙) = 0,			𝑗 ∈ 𝐽
𝜆a ∙ 𝛿 = 0
𝜆`,+ ≥ 0,			𝑗 ∈ 𝐽
𝜆a ≥ 0

(14) 

which can be expressed with mixed-integer constraints. M corresponds to a big-M value, s are 

slack variables and y are binary variables to indicate the if the corresponding constraints are 

active. Thus, a single-level MINLP model can be obtained, as shown in Eq. (15). 

min	𝛿
𝑠. 𝑡.		𝑠ℎ𝑎𝑝𝑒�𝜽Z� ∈ 𝑄

									−1 − 𝜆a −r𝜇a,d
d

𝜃ed = 0

									r𝜆`,+ ∙
𝜕𝑔+
𝜕𝜃d+

+r𝜇`,5 ∙
𝜕ℎ5
𝜕𝜃d5

+ 𝜇a,d = 0,			∀𝑝 ∈ 𝑃

								r𝜆`,+ ∙
𝜕𝑔+
𝜕𝑥�+

+r𝜇`,5 ∙
𝜕ℎ5
𝜕𝑥�5

= 0,			∀𝑘 ∈ 𝐾

									𝑔+ + 𝑠`,+ = 0,			∀𝑗 ∈ 𝐽
									−𝛿 + 𝑠a = 0
									𝜃d = 𝜃dK + 𝛿𝜃ed,			∀𝑝 ∈ 𝑃
									𝑠`,+ ≤ 𝑀�1 − 𝑦`,+�,				∀𝑗 ∈ 𝐽
									𝜆`,+ − 𝑦`,+ ≤ 0,				∀𝑗 ∈ 𝐽
									𝑠a ≤ 𝑀(1 − 𝑦a)
									𝜆a − 𝑦a ≤ 0
									−𝛿 ≤ 0
									𝜆`,+ ≥ 0
									𝜆a ≥ 0
									𝑠`,+ ≥ 0
									𝑠a ≥ 0
									𝑦`,+ ∈ {0,1}
									𝑦a ∈ {0,1}

(15) 
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Compared with the traditional flexibility index model shown in Eq. (3), the proposed model 

has three characteristics:  

(1) The model is simpler. Eq. (10) is a bi-level optimization model, and the corresponding 

MINLP model is also simpler and easier to solve.  

(2) The Haar condition is not required. In Eq. (3), a rectangle is defined as an expression of 𝜽, 

𝜽K and 𝛿. Since Eq. (3) requires all the process parameters in the whole rectangle restricted 

in the feasible region, it is a semi-infinite programming problem; thus, the Haar condition 

is required for finding the active constraints. By contrast, Eq. (10) has ability to find the 

direction corresponding to the active constraint directly, and Haar condition is unnecessary. 

(3) Eq. (10) can be extended to any shape of feasible region, as long as its formulation of 𝜽Z 

can be provided. 

5. Design centering problem 

Another important issue for the design space definition is design centering, where the objective 

is to select the nominal conditions of the process parameters that maximize the feasible region 

of operation. It can be geometrically interpreted as the problem of inscribing the largest shape 

of the uncertainty set of process parameters within a given feasible region. Thus, the difference 

between the flexibility index calculation and the design centering problem is that for the former 

problem the nominal point is given, whereas in the latter the flexibility index is maximized by 

also choosing the optimal nominal point. The nominal point will be searched within the feasible 

region; thus, the nominal point must satisfy all the model constraints, i.e., 

�
𝑔+(𝜽K, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
ℎ5(𝜽K, 𝒙) = 0,			∀𝑖 ∈ 𝐼

(16) 

5.1. Bi-level formulation of design centering 

Based on the flexibility index model shown in Eq. (15), the design centering problem can be 

formulated as the following bi-level optimization model. The inner level is the minimization 
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problem of flexibility index, and the outer level is the maximization problem where the nominal 

point is searched within the feasible region. 

𝐹 = max
𝜽S

𝛿

𝑠. 𝑡.		𝑔+(𝜽K, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
								ℎ5(𝜽K, 𝒙) = 0,			∀𝑖 ∈ 𝐼
								𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(15)

(17) 

Note that, if directly reformulating Eq. (15) by the Karush-Kuhn-Tucker (KKT) conditions and 

complementarity conditions, the obtained single-level optimization model cannot generate an 

incorrect result, and the result of a linear case is shown in Appendix. Since Eq. (17) is a typical 

bi-level optimization problem25, the lower level problem is to calculate the flexibility index for 

a given nominal point, and the upper level problem is to search the nominal points within the 

feasible region. Generally, the procedure to solve Eq. (17) mainly contains three steps: 

(1) Choose an initial nominal point 𝜽�K at the upper level; 

(2) Solve the lower level problem, and find the global minimum solution of 𝛿; 

(3) Based on the value of 𝛿, apply a search method to generate a new nominal point 𝜽�K, until 

the stop criterion is attained. 

The key issue of bi-level optimization is to find the global solution of the lower-level model in 

each iteration. In this section, two different methods are proposed to solve the design centering 

problems. The first method is vertex direction search, which can be applied for the special case 

of finding a largest rectangle within a convex feasible region, and the method does not require 

solving the flexibility index model; the second method is based on derivative-free optimization 

(DFO), which is applicable to general cases, and a strategy of multiple starts is developed to 

improve the global optimality.  

5.2. Method 1: Vertex direction search for convex cases 

The vertex direction search method for design centering is based on the theorem by Swaney 

and Grossmann (1985) that establishes that if the constraint functions are jointly convex in the 
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process parameters and control variables, then the solution of the flexibility constraint has its 

global optimal solution at a vertex of the polyhedral region that describes the process parameter 

set. The basic idea of this method is to maximize the flexibility index 𝛿 and to determine the 

nominal condition of the process parameters,	𝜃dK , by simultaneously evaluating feasibility over 

all vertex directions, which is formulated as Eq. (18). 

max	𝛿
E∈ℝG,b=S

𝑠. 𝑡.		𝑔+,��𝜃d,�, 𝒙� ≤ 0,			∀	𝑗 ∈ 𝐽,			𝑣 ∈ 𝑉𝐷
									ℎ5,��𝜃d,�, 𝒙� = 0,			∀𝑖 ∈ 𝐼,			𝑣 ∈ 𝑉𝐷
									𝜃d,� = 𝜃dK + 𝛿 ⋅ 𝑑𝑒𝑣d,�,			∀	𝑝 ∈ 𝑃,			𝑣 ∈ 𝑉𝐷

(18) 

where subscripts 𝑝 and 𝑣	stand for process parameter and vertex directions, respectively; 𝜃d,� 

is the process parameter at each vertex direction. 𝑑𝑒𝑣d,�	is a parameter that contains all vertex 

directions 𝑣 ∈ 𝑉𝐷. 𝛥𝜃dP and	𝛥𝜃dN represent the allowable ranges of operation for each process 

parameter, 𝑝 ∈ 𝑃. For the case of two process parameters, VD = {(Δ𝜃`P,	Δ𝜃aP), (−Δ𝜃`N,	Δ𝜃aP), 

(Δ𝜃`P,−Δ𝜃aN), (−Δ𝜃`N,−Δ𝜃aN)}. As shown in Figure 2, each process parameter at four vertex 

directions will be added to the optimization model; thus, the total number of the constraints is 

𝐼 ∙ 𝐽 ∙ 2% . The limitation of this method is that it only allows finding vertex solutions. 

Furthermore, the size of the LP/NLP problem in Eq. (18) grows exponentially with the number 

of process parameters, i.e., 2%. However, the structure of the problem can be exploited by a 

decomposition scheme when necessary. 

 

Figure 2. Vertex search method for convex feasible regions. 
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5.3. Method 2: Derivative-free optimization using multiple starting points 

The target of design centering problem is to find an optimal nominal point, which corresponds 

to the largest feasible operating region. Equation (17) shows that the design centering problem 

is a bi-level optimization model. In the upper level problem, the nominal point will be searched 

within the feasible region, and in the lower level problem, an exact flexibility index should be 

calculated for each nominal point. For a general bi-level optimization problem, the most 

important issue is how to guarantee finding the global optimal solution of the lower level model 

at each iteration. Similarly, for the design centering problem, the key issue is to guarantee 

locating the global optimal flexibility index for each nominal point. 

Since the MINLP model in Eq. (15) can be solved by the GAMS/BARON solver to obtain the 

global optimal solution, we can define Eq. (15) as an implicit function of 𝜽K, i.e., 

𝛿 = 𝐹𝐼(𝜽K, 𝒙) (19) 

which indicates that, for an arbitrary nominal point, an exact flexibility index 𝛿 can be obtained. 

Thus, Eq. (17) can be rewritten as Eq. (20).  

𝐹 = max
𝜽S

𝐹𝐼(𝜽K, 𝒙)

𝑠. 𝑡.		𝑔+(𝜽K, 𝒙) ≤ 0,			∀𝑗 ∈ 𝐽
									ℎ5(𝜽K, 𝒙) = 0,			∀𝑖 ∈ 𝐼

(20) 

which can be viewed as a single-level optimization model with a black-box objective 𝐹𝐼(𝜽K, 𝒙). 

Therefore, a derivative-free optimization (DFO) method can be applied to solve this model. 

However, the presence of the state variables makes that the feasible region of nominal points 

to be described by a set of multivariate functions of 𝜽K and 𝒙. Thus, the maximum constraint 

violation (MCV) of all the constraints is defined in order to identify the feasible region.  

𝑀𝐶𝑉(𝜽K, 𝒙) = min 𝑢
𝑠. 𝑡.		𝑔+(𝜽K, 𝒙) ≤ 𝑢,			∀𝑗 ∈ 𝐽
									ℎ5(𝜽K, 𝒙) = 0,			∀𝑖 ∈ 𝐼

(21) 

To make all the constraints feasible, MCV should be less than 0, i.e., 
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𝑀𝐶𝑉(𝜽K, 𝒙) ≤ 0 (22) 

Eq. (20) can then be written as 

𝐹 = max
𝜽S

𝐹𝐼(𝜽K, 𝒙)

𝑠. 𝑡.		𝑀𝐶𝑉(𝜽K, 𝒙) ≤ 0
(23) 

Moreover, in order to convert Eq. (23) to a form that is easily handled by general DFO solvers, 

a penalty coefficient M is introduced in the objective function. The penalty coefficient simply 

serves as a way to scale the constraint violation and its value need only be tuned for numerical 

stability. Thus, the final design centering model is 

min
𝜽S

−𝐹𝐼(𝜽K, 𝒙) + 𝑀 ∙ max�0,𝑀𝐶𝑉(𝜽K, 𝒙)�

𝑠. 𝑡.		𝜃dK� ≤ 𝜃dK ≤ 𝜃dK�,			𝑝 ∈ 𝑃
(24) 

where the bound constraints of 𝜃dK are also given. Eq. (24) is a DFO model with a black-box 

objective function and a box constraint, which can be handled by most of the DFO solvers. 

Specially, if there are no state variables, we do not need to calculate the constraint violations 

by solving optimization problems. Thus, Eq. (24) can be simplified as 

min
𝜽S

−𝐹𝐼(𝜽K) + 𝑀 ∙r �max �0, 𝑔+(𝜽K)��
>

+

𝑠. 𝑡.		𝜃dK� ≤ 𝜃dK ≤ 𝜃dK�,			𝑝 ∈ 𝑃
(25) 

For an initial nominal point, the DFO solution strategy to solve the design centering problem 

is summarized in Figure 3. At the kth iteration, the nominal point 𝜽�K is used to solve a MINLP 

model and an NLP model, and the results are used to evaluate the objective function. If it does 

not meet the stopping criteria, a new nominal point is generated. 
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Figure 3. Flowchart of DFO solution strategy to design centering for an initial nominal point. 

Theoretically, based on search strategies, the DFO methods26 can be grouped into two types: 

direct search methods, which determine the search directions directly from the function 

evaluation data, and model-based methods, which typically use a trust-region framework for 

selecting new iterations. In addition, DFO methods27 can be divided into local search methods, 

which start from an initial guess and move within a local trust region, and global search 

methods, which search the entire bounded variable space. However, essentially, neither the 

local search methods nor the global search methods can guarantee finding the global optimum.  

In this work, a DFO solver, Py-BOBYQA, which is a Python implementation of the BOBYQA 

Fortran solver by Powell28, is introduced to solve design centering problems. Py-BOBYQA is 

designed for the optimization models like Eq. (26). 

min
�∈ℝ�

𝑓(𝑥)

𝑠. 𝑡.		𝑎 ≤ 𝑥 ≤ 𝑏
(26) 

Py-BOBYQA is based on the trust-region method, which can find local solutions of nonlinear, 

nonconvex, least-squares minimization problems (with box constraints), without requiring 
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derivatives of the objective. Py-BOBYQA approximates the function f(x) using a quadratic 

function, which matches the function value of f(x) at certain interpolation points chosen by the 

algorithm. The quadratic function is then used in a trust region procedure for updating the 

decision variables. A more detailed description of the algorithm can be found in [29]. It is 

worth noting that Py-BOBYQA has an optional heuristic method for global search mode. As it 

is a heuristic, there is also no guarantees it will find a global minimum, but it is more likely to 

escape local minima if there are better values nearby. 

Since Py-BOBYQA is developed based on the trust-region method, the initial value has great 

influence on the final result of the DFO model. In order to take a more complete assessment of 

the design space, the Latin hypercube sampling (LHS) strategy is applied to generate a set of 

initial points in the process parameter space. Then, a feasibility check is performed through 

evaluating the model constraints at each LHS point. If a point is infeasible, it will be removed. 

To summarize, this method mainly contains four steps: 

(1) Perform the LHS strategy over the space of process parameters, where upper and lower 

bounds are required. 

(2) Check the feasibility of each sampling point 𝜽]dK  through solving the following NLP model. 

𝑢]d ≤ 0 indicates that the point is feasible, which is restricted within the feasible region. 

𝑢]d = min 𝑢
𝑠. 𝑡. 𝑔+�𝜽]dK , 𝒙� ≤ 𝑢,			∀𝑗 ∈ 𝐽
							ℎ5�𝜽]dK , 𝒙� = 0,			∀𝑖 ∈ 𝐼

(27) 

(3) Solve the DFO model of design centering problem for each feasible LHS point by using 

Eq. (24), and the obtained result for each point is restored. 

(4) The optimal nominal point then corresponds to the one that has associated the largest value 

of flexibility index. 
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Note that the design centering model for each LHS point is actually calculated independently, 

so the problem can be solved in parallel. The pseudocode of the above DFO strategy using 

multiple starting points is described in Algorithm 1. 

Algorithm 1: DFO method with multiple starting points 
1:   Perform Latin hypercube sampling method to discretize the process parameter space: 
      𝜽K = {𝜽]dK ,			∀𝑠𝑝 ∈ 𝑆} 
2:   for each nominal point 𝜽]dK , 𝑠𝑝 ∈ 𝑆	 
3:  Check feasibility of the nominal point. (Eq. (27)): 
4:  if nominal point is feasible 𝑢]d ≤ 0 then 
5:        Conserve point 𝜽]dK  in the 𝑆′. 
6:  else 
7:        Exclude point 𝜽]dK  from 𝑆. 
8:  end 
9:   end 
10: for each feasible nominal point 𝜽]dK , 𝑠𝑝 ∈ 𝑆¢ 
11:  Solve the DFO model at 𝜽]dK : 
12:        Set the initial conditions for the DFO solver. 
13:        while the stop criteria of the DFO solver does not meet: 
14:            Calculate the flexibility index: 𝐹𝐼 �𝜽𝑠𝑝𝑁 , 𝒙�. (Eq. (15)) 

15:            Calculate the maximum constraint violation: 𝑀𝐶𝑉 �𝜽𝑠𝑝𝑁 , 𝒙�. (Eq. (21)) 
16:            Solve the DFO model and restore 𝛿]d. 
17        end 
18: end 
19: The solution of the design centering problem is 𝜽]dK∗ such that max¥𝛿𝑠𝑝,			∀𝑠𝑝 ∈ 𝑆′¦. 

 

6. Case studies  

Three case studies are presented to illustrate the flexibility index and design centering methods. 

Pyomo (Python-based open-source software package) is applied to define the models. The 

MINLP model can be automatically deduced within the function module. The GAMS solver, 

BARON, is called to solve the MINLP model through the interface of Pyomo and GAMS. 

Rectangle and elliptical uncertainty sets are considered in each case. 
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6.1. Linear case 

Consider the following linear inequalities, 

𝑔`:	𝜃a − 𝜃` ≤ 0

𝑔a :	− 𝜃a −
𝜃`
3 +

4
3 ≤ 0

𝑔§:	𝜃a + 𝜃` − 4 ≤ 0

 

For the flexibility index problem, 𝜃` and 𝜃a are regarded as process parameters. The feasible 

region is shown in yellow, and the nominal point of (𝜃`,𝜃a) for the rectangle case, as shown in 

Figure 4(a), is (1.8, 1). The rectangle which is used for direction search is defined as 

−2 ≤ 𝜃è ≤ 2
−1 ≤ 𝜃ea ≤ 1

 

According to Eq. (15), the MINLP model can be developed in Pyomo and solved by BARON. 

The result of flexibility index is F = 0.16. The direction that can find the active constraint is 

(𝜃e`,𝜃ea) is (−2,−1), which corresponds to a vertex of the rectangle, and the critical point of 

(𝜃`,𝜃a) is (1.48, 0.84). Similarly, the formulation of the ellipse is defined as 

s
𝜃e`
2 u

a

+ s
𝜃ea
1 u

a

= 1 

The nominal point of (𝜃`,𝜃a) is specified as (2.2, 1.2). Through solving the MINLP model, the 

result of flexibility index can be obtained, i.e., F = 0.2683. As shown in Figure 4(b), the ellipse 

is tangent to 𝑔§ at the critical point (2.68, 1.32). The direction (𝜃e`,𝜃ea) is (1.7888, 0.4472). 
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(a)                                                            (b) 

Figure 4. Flexibility index of the linear example. 

For this linear case, both of the proposed design centering methods can be used for solving the 

design centering problem. Method 1 requires simultaneously evaluating the feasibility over all 

vertex directions, i.e., all the four vertices are restricted within the design space. 

max	𝛿
E∈ℝG,¨©

𝑠. 𝑡.		𝑔`��: (𝜃aK − 𝛿 ∙ Δ𝜃aN) − (𝜃`K − 𝛿 ∙ Δ𝜃`N) ≤ 0

									𝑔a��: −(𝜃aK − 𝛿 ∙ Δ𝜃aN) −
(𝜃`K − 𝛿 ∙ Δ𝜃`N)

3 +
4
3	 ≤ 0

									𝑔§��: (𝜃aK − 𝛿 ∙ Δ𝜃aN) + (𝜃`K − 𝛿 ∙ Δ𝜃`N) − 4 ≤ 0
								𝑔`��: (𝜃aK + 𝛿 ∙ Δ𝜃aP) − (𝜃`K − 𝛿 ∙ Δ𝜃`N) ≤ 0

								𝑔a��: −(𝜃aK + 𝛿 ∙ Δ𝜃aP) −
(𝜃`K − 𝛿 ∙ Δ𝜃`N)

3
+
4
3	
≤ 0

								𝑔§��: (𝜃aK + 𝛿 ∙ Δ𝜃aP) + (𝜃`K − 𝛿 ∙ Δ𝜃`N) − 4 ≤ 0
								𝑔`��: (𝜃aK − 𝛿 ∙ Δ𝜃aN) − (𝜃`K + 𝛿 ∙ Δ𝜃`P) ≤ 0

								𝑔a��: −(𝜃aK − 𝛿 ∙ Δ𝜃aN) −
(𝜃`K + 𝛿 ∙ Δ𝜃`P)

3 +
4
3	 ≤ 0

								𝑔§��: (𝜃aK − 𝛿 ∙ Δ𝜃aN) + (𝜃`K + 𝛿 ∙ Δ𝜃`P) − 4 ≤ 0
								𝑔`��: (𝜃aK + 𝛿 ∙ Δ𝜃aP) − (𝜃`K + 𝛿 ∙ Δ𝜃`P) ≤ 0

								𝑔a��:−(𝜃aK + 𝛿 ∙ Δ𝜃aP) −
(𝜃`

K + 𝛿 ∙ Δ𝜃`P)
3

+
4
3	
≤ 0

								𝑔§��: (𝜃aK + 𝛿 ∙ Δ𝜃aP) + (𝜃`K + 𝛿 ∙ Δ𝜃`P) − 4 ≤ 0

 

where Δ𝜃`∓	and Δ𝜃a∓ correspond to 2 and 1, respectively. 

According to Eq. 18, the flexibility index, F = 0.2857, can be obtained. Figure 5 shows the 

(���� �)

(����� ����)

� = ����

1 2 3 4
θ1

1

2

3

4

θ2

(���� ���)

(����� ����)

� = ������

1 2 3 4
θ1

1

2

3

4

θ2



 22 

result for the selected design center 𝜃` = 2, 𝜃a = 1.1429. In order to execute the LHS method 

for Method 2, the sampling ranges are set as [0, 4] and [0, 2] for 𝜃` and 𝜃a, respectively. A 

total of four points are sampled, and three of them are feasible, which are listed in Table 1. The 

DFO method with multiple starting points is applied to solve the design centering problem. 

Three feasible points are selected as initial values for the DFO solver, and three results of 

design centering can be obtained. The results for the rectangle and ellipse cases are also listed 

in Table 1. The result corresponding to the largest flexibility index define the optimal nominal 

point. Figure 6 indicates the correctness of the results. 

 

Figure 5. Linear example of design centering using Method 1.

    

(a)                                                            (b) 

Figure 6. Linear example of design centering using Method 2. 
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6.2. Nonlinear case 

To further test the performance of the proposed method, the following nonlinear and 

nonconvex example is considered: 

𝑔`: (𝜃a − 2)a + (𝜃` − 2)§ + (𝜃a − 2)(𝜃` − 2) −
1
2 ≤ 0

𝑔a: (𝜃a − 2)a + (𝜃` − 2)a − 2 ≤ 0
 

The formulations of the rectangle and ellipse are defined similarly as in the above linear case. 

The nominal points of (𝜃`,𝜃a) are set to (1.5, 1.7) and (2.1, 1.7) for the rectangle and ellipse 

cases, respectively. Figure 7(a) shows the obtained flexibility index, F = 0.2760. The critical 

point, (1.5618, 1.4240), can be found at the direction (𝜃e`,𝜃ea) = (0.2239,−1). For the ellipse, 

the flexibility index is F = 0.3507, and the corresponding critical point and the critical direction 

are (1.7510, 1.3959) and (−0.9954,−0.8674). Figure 7 indicates that the proposed method 

is also effective for the nonconvex cases. The proposed flexibility index model does not require 

the Haar condition, because the directions are searched along the boundary of the given 

rectangle or ellipse, which means that it has enabled to find the active constraints directly. 

    

(a)                                                            (b) 

Figure 7. Flexibility index of the nonlinear example. 

Similarly, for the design centering problem, the sampling ranges are set to [0.5, 3.5] and [0.5, 
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3.5] for 𝜃` and 𝜃a, respectively. A total of six points are sampled, and three of them are feasible, 

which are listed in Table 1. After setting each feasible point as the initial values for the DFO 

solver, the results of the design centering problem can be obtained. The results for the rectangle 

and ellipse corresponding to the largest flexibility index are shown in Table 1. Figure 8 can 

verify the correctness of the results. Table 1 lists the the computational times of these two 

examples for Method 2. 

    

(a)                                                            (b) 

Figure 8. Nonlinear example of design centering using Method 2. 

Table 1. Results of design centering for Method 2. 

 

3 feasible starting 

points for DFO solver 

(in 10 LHS points) 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

Linear 

example 

1 (3.4952, 0.3313) 0.2857 (2, 1.1428) 0.3878 (2, 1.1328) 

2 (2.0344, 1.6559) 0.2857 (2, 1.1429) 0.3878 (2, 1.1328) 

3 (1.9093, 0.7600) 0.2857 (2, 1.1429) 0.3878 (2, 1.1326) 

Time (s) 88.41 69.77 

Nonlinear 

example 

1 (2.6784, 1.9934) 0.2169 (2.2730, 1.9511) 0.5459 (1.6813, 1.9771) 

2 (2.1405, 1.3861) 0.3057 (2.1614, 1.7413) 0.5477 (1.6817, 1.9693) 

3 (0.7713, 2.0994) 0.4631 (1.6316, 1.8938) 0.5477 (1.6815, 1.9703) 

Time (s) 50.85 74.46 
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The results of the flexibility index and design centering problems show that the final flexibility 

index of ellipse feasible region is larger than the one of rectangle feasible region. The areas of 

the rectangle and ellipse in Figure 6 are 0.652996 and 0.944921; and the areas of the rectangle 

and ellipse in Figure 8 are 1.71569 and 1.8848. Therefore, we can conclude that the flexibility 

index with ellipse uncertainty set can represent larger feasible operating region. 

6.3. CSTR reaction 

This case is a 2-step consecutive reaction. A is 3-chlorophenyl-hydrazonopropane dinitrile; B 

is 2-mercaptoethanol, and the intermediate product C is formed during reaction; the reaction 

product is D, 3-chlorophenyl-hydrazonocyanoacetamide, with byproduct E, ethylene sulfide. 

The process described by the mechanism of reaction provided by Chen et al.9,30  

𝐴+𝐵 𝑘1® 𝐶, 𝑟1 = 𝑘1 ∙ 𝑐𝐴 ∙ 𝑐𝑏
𝐶 𝑘2®𝐷+𝐸, 𝑟2 = 𝑘2 ∙ 𝑐𝑐

 

where 𝑟+ are the reaction rates. Two process parameters are residence time, 𝜏, and the ratio of 

the concentration of B to A, 𝑅³/µ. 𝑘+ are model parameters, which are fixed as their mean value 

{0.31051, 0.026650}. The feasible range of 𝜏 and 𝑅µ|³ are described as follows.  

0 ≤ 𝜏 ≤ 550
0 ≤ 𝑅³/µ ≤ 6 

The mass balance of the CSTR is given by the following set of equations. 

𝑐³� − 𝑐³ + 𝜏 ∙ (−𝑟 ) = 0
𝑐µ� − 𝑐µ + 𝜏 ∙ (−𝑟 ) = 0
𝑐·� − 𝑐· + 𝜏 ∙ (𝑟 − 𝑟a) = 0
𝑐¸� − 𝑐¸ + 𝜏 ∙ 𝑟a = 0
𝑐¹� − 𝑐¹ + 𝜏 ∙ 𝑟a = 0

 

where 𝑐5� are the initial concentrations {𝑐³� = 0.53, 𝑐µ� = 0.53 ∙ 𝑅µ|³, 𝑐·� = 0, 𝑐¸� = 0, 𝑐¹� = 0} 

mol/L. The quality specifications are minimum yield of product D and minimum ratio of D to 

unreacted species, that is,  
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𝑐¸
𝑐³� − 𝑐³

≥ 0.9

𝑐¸
𝑐³ + 𝑐µ + 𝑐·

≥ 0.2
 

Before calculating the feasible operating region over the process parameters, the formulations 

of the rectangle and ellipse are defined by using the entire given ranges.  

−275 ≤ �̃� ≤ 275
−3 ≤ 𝑅e³/µ ≤ 3  

»
�̃�
275¼

a

+ s
𝑅e³/µ
3 u

a

= 1 

Table 2. Results of flexibility index for CSTR reaction.  

Nominal points 
Flexibility index 

Rectangle Ellipse 

1 (527, 2.4) 0.7366 0.7395 

2 (444, 3.8) 0.5246 0.5683 

3 (350, 4.2) 0.3913  0.3938 

 
Table 3. Results of design centering of multiple starting points for CSTR reaction. 

7 feasible starting 

points for DFO solver 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

1 (526.9448, 2.4281) 0.8639579303 (543.7643, 2.7819) 0.8998934294 (530.4755, 2.8811) 

2 (382.2102, 1.3103) 0.8639492781 (414.0928, 2.7819) 0.8828508761 (428.8189, 2.8335) 

3 (495.1392, 2.3676) 0.8639579283 (479.5287, 2.7819) 0.8946968608 (494.9951, 2.8671) 

4 (444.4222, 3.7893) 0.8639579263 (430.0968, 2.7819) 0.8732584496 (388.0840, 2.8068) 

5 (482.5902, 3.5384) 0.8639579333 (448.9690, 2.7819) 0.8880814238 (455.3512, 2.8481) 

6 (419.0243, 0.2167) 0.8639579423 (437.0818, 2.7819) 0.8856877694 (442.7762, 2.8415) 

7 (350.5285, 4.2073) 0.8639579370 (368.1792, 2.7819) 0.8674989006 (368.8375, 2.7936) 

 

Table 4. Final results of design centering for CSTR reaction. 

 Rectangle Ellipse 

Flexibility index: 0.8639579423 0.8998934294 
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Nominal point: (437.0818, 2.7819) (530.4755, 2.8811) 

Critical point: (337.7111, 5.3738) (512.9353, 5.5740) 

Critical direction: (-115.0181, 3.0) (-19.4914, 2.9925) 

Feasible region: 
𝜏: [199.4934, 674.6703] 

𝑅³/µ: [0.1901, 5.3738] 

((𝜏-530.4755)/275)2 + 

((𝑅³ µ⁄ -2.8811)/3)2 ≤ 0.89989342942 

Time (s) 168.17 187.2 

 

In order to test the flexibility index problem, as shown in Table 2, three different feasible points 

are chosen as nominal points. The results show that, for the same nominal point, the flexibility 

index of ellipse feasible region is larger than the one of rectangle feasible region. For the design 

centering problem, the sampling ranges are set as [0, 550] and [0, 6], respectively. 20 sampling 

points are sampled, and 7 of them are feasible, which are listed in Table 3. Each feasible point 

is set as an initial value for the DFO solver, and the results of the rectangle and ellipse cases 

for design centering problem can be obtained. The result corresponding to the largest flexibility 

index is the final optimal nominal point. The corresponding critical point, critical direction, 

feasible region and computational time are also summarized in Table 4. Moreover, note that 

the given ranges of 𝜏 and 𝑅³/µ are [0, 550] and [0, 6], respectively, which are used to formulate 

the rectangle and ellipse for direction search. The obtained feasible regions shown in Table 4 

indicate that, for the feasible range of 𝜏, [199.4934, 674.6703], the upper bound is above 550, 

which means that range of 𝜏 should be updated, and it can be feasible in a larger scope. 

6.4. Michael Addition Reaction  

This case is a Michael Addition Reaction with kinetics9 described in the following equations. 

𝐴𝐻 + 𝐵
�¿→ 𝐴N + 𝐵𝐻P, 𝑟 = 𝑘` ∙ 𝑐³Á ∙ 	𝑐µ 

𝐴N + 𝐶
�Â→ 𝐴𝐶N, 𝑟a = 𝑘a ∙ 𝑐³Ã ∙ 𝑐·  

𝐴𝐶N
�Ä→ 𝐴N + 𝐶, 𝑟§ = 𝑘§ ∙ 𝑐³·Ã 
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𝐴𝐶N + 𝐴𝐻
�Å→ 𝐴N + 𝑃, 𝑟Æ = 𝑘Æ ∙ 𝑐³·Ã ∙ 𝑐³Á 

𝐴𝐶N + 𝐵𝐻P �Ç→ 𝑃 + 𝐵, 𝑟È = 𝑘È ∙ 𝑐³·Ã ∙ 𝑐µÁG 

where 𝑟5 are reaction rates; AH (Michael donor) and C (Michael acceptor) are starting materials; 

B is a base; BH+, 𝐴N and	𝐴𝐶N are reaction intermediates; P is the product; the rate constants 

𝑘5 are model parameters, but fixed at [49.7796, 8.9316, 1.3177, 0.3109, 3.8781] in this work.  

The CSTR mass balance over the reactions are described as follows. 

𝑐³Á� − 𝑐³Á + 𝜏 ∙ (−𝑟 − 𝑟Æ) = 0 

𝑐µ� − 𝑐µ + 𝜏 ∙ (−𝑟 + 𝑟È) = 0 

𝑐·� − 𝑐· + 𝜏 ∙ (−𝑟a + 𝑟§) = 0 

𝑐³Ã� − 𝑐³Ã + 𝜏 ∙ (𝑟 − 𝑟a + 𝑟§ + 𝑟Æ) = 0 

𝑐³·Ã� − 𝑐³·Ã + 𝜏 ∙ (𝑟a − 𝑟§ − 𝑟Æ − 𝑟È) = 0 

𝑐µÁG
� − 𝑐µÁG + 𝜏 ∙ (𝑟 − 𝑟È) = 0 

𝑐%� − 𝑐% + 𝜏 ∙ (𝑟Æ + 𝑟È) = 0 

Two CQA constraints are the conversion of feed C must be greater than 90%, the concentration 

of 𝐴𝐶N in the outlet must be less than 0.002 mol/L. 

𝑐·� − 𝑐· − 𝑐³·Ã
𝑐·�

≥ 0.9 

𝑐³·Ã ≤ 0.002 

The initial concentrations {𝑐³Á� , 𝑐µ�, 𝑐·�, 𝑐³Ã� , 𝑐³·Ã� , 𝑐µÁG
� , 𝑐%�} are set to be {0.3955, 0.3955/R, 

0.25, 0, 0, 0, 0} mol/L. The process parameters are the residence time 𝜏 and the molar ration 

R, and the feasible range of 𝜏 and R are described as follows. 

400 ≤ 𝜏 ≤ 1400
10 ≤ 𝑅 ≤ 30  

The formulations of the rectangle and ellipse are defined by using the entire given ranges.  

−500 ≤ 𝜏 ≤ 500
−10 ≤ 𝑅 ≤ 10  
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Table 5. Results of flexibility index for Michael addition reaction.  

Nominal points 
Flexibility index 

Rectangle Ellipse 

1 (1300, 12) 0.7409177641 0.9915670609 

2 (800,15) 0.9835211248 1.0816141062 

3 (1000, 20) 0.0823404880 0.4861080749 

 
Table 6. Results of design centering of multiple starting points for Michael addition reaction. 

7 feasible starting 

points for DFO solver 

Rectangle Ellipse 

Flexibility index Nominal point Flexibility index Nominal point 

1 (1358.0814, 18.0937) 1.0588514558 (1400.0, 14.2467) 1.0604982864 (1400.0, 17.3367) 

2 (1094.9277, 14.3677) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 

3 (1300.2531, 17.8920) 0.9409177641 (1400.0, 10.0) 1.0727437634 (1400.0, 17.1645) 

4 (1208.0404, 22.6311) 0.5927054415 (1321.3945, 22.6464) 1.1071006470 (1310.0050, 10.0) 

5 (1277.4367, 21.7948) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 

6 (1161.8625, 10.7225) 0.9409177641 (1400.0, 10.0) 1.2632318763 (1400.0, 10.0) 

7 (1037.3246, 24.0243) 0.0842832149 (1037.4618, 22.0136) 0.5184748470 (942.7930, 19.9183) 

 

Table 7. Final results of design centering for CSTR reaction. 

 Rectangle Ellipse 

Flexibility index: 1.0588514558 1.2632318763 

Nominal point: (1400.0, 14.2467) (1400.0, 10.0) 

Critical point: (1025.0418, 24.8352) (849.2243, 16.1834) 

Critical direction: (-354.1178, 10.0) (-436.0052, 4.8949) 

Feasible region: 
𝜏: [870.5742, 1929.4257] 

𝑅: [3.6582, 24.8352] 

((𝜏-1400)/500)2 + 

((𝑅-10)/10)2 ≤ 1.26323187632 

Time (s) 2443.6 695.92 

 

As shown in Table 5, three different feasible points are chosen as nominal points. The results 

of flexibility index also indicate show that, for the same nominal point, the flexibility index of 
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ellipse is larger than the one of rectangle. For the design centering problem, the sampling ranges 

are set as [400, 1400] and [10, 30], respectively. 20 sampling points are sampled, and 7 of them 

are feasible, which are listed in Table 6. The result corresponding to the largest flexibility index 

for all the feasible points is the final optimal nominal point. All the results are also summarized 

in Table 7. Similarly, the obtained feasible rectangle region shown in Table 7 indicates that, 

for the feasible range of 𝜏, [870.5742, 1929.4257], the upper bound is above the given 1400, 

for the feasible range of 𝑅, [3.6582, 24.8352], the lower bound is below the given 10. which 

means that the feasible region actually has a larger scope. 

7. Conclusions 

In this study, we propose a novel bi-level optimization formulation of flexibility index based 

on a direction search method, which can be applied to any shapes of feasible operating regions. 

For simplicity, only rectangle and ellipse cases are considered. Through the KKT conditions, 

the flexibility index problem can be transformed into a single-level optimization model. For 

design centering problems, we propose two methods with different levels of complexity. The 

vertex direction search method is developed as a single-level optimization model, which can 

be applicable to a rectangle feasible region for convex cases. The derivative-free optimization 

method is developed based on the proposed flexibility index model. In order to try to find the 

global solution, the LHS method is used to generate multiple starting points for the DFO solver. 

By comparing the results obtained by all the starting points, the optimal nominal point 

corresponding to the largest flexibility index can be determined. The results of the various case 

studies show that the proposed method is applicable to convex and nonconvex cases. 
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Appendix 

For each feasible nominal point, Eq. (15) can give an exact result of flexibility index. The 

straightforward strategy to solve Eq. (17) is applying the KKT conditions to transform Eq. (15) 

into a MINLP model. Therefore, the bi-level optimization problem can be reformulated into a 

single-level optimization problem. Applying this single-level formulation to a linear case, as 

shown in Figure 9, the final result of flexibility index is F = 1.7778, and the obtained nominal 

point is (4, 0). It is obvious that this result is incorrect, because the final rectangle likes beyond 

the feasible region. The reason is that KKT is a necessary condition. Eq. (15) is nonconvex, 

and its KKT condition cannot guarantee providing a global minimum of 𝛿 for each nominal 

point; thus, the outer maximization cannot get the correct result. 

 

Figure 9. Result of design centering based on KKT reformulation. 
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